
'AD-A126 844 A TWO-PERIOD REPAI P.465 INVENTORY MODEL FOR A NAVAL
AREWORK FACIL YU) NAVAL POSTGRADUATE SCHOOL

AR S S MONTEREY CA J -UND DEC 82

UCSM E N OEN E - O NIMMMMMMM



1Q5
A..

11111.2 1.6

MICROCOPY RESOLUTION TEST CHART
14ATIONAL BUREAU OF STANDADS 963-A



i

NAVAL POSTGRADUATE SCHOOL
Monterey, California

DTIC
l , ELECTE

'~APS 151W0
THESIS D

A TWO-PERIOD REPAIR PARTS INVENTORY MODEL
FOR A NAVAL AIR REWORK FACILITY

by

C..Q John J. Hund'L C)

December 1982

Thesis Advisor: Alan W. McMasters

Approved for public release; distribution unlimited

83 04 14 072



UNCLASSIFIED
EGUITRV CLASIVICa?. oF T41% PAR 0410 4 a s o

IA INSRUCION

R IT OOCU MNTATMN PAGE va0t 3T3rw4
inupo. . P Ru,,T 0,t Ws U S. 146cmswvs CATaLoG NUaG ft

4. TIT1LE (me sumeti 9. Type or REPopt a PEROD cOVREWOMaster' s Thesis
A Two-Period Repair Parts Inventory Decter 1982

Model for a Naval Air Rework Facility SpaFam6IG OG. EPORT NuKSa

. AWg NO1Vb ..CONTRACT Oil GRAmT MlRMURej

John J. Hund

9. PImNVONNIN OtAmNZATION MNS &NO AgoasE AE. PROa PROKJ U tCT. TASK

Naval Postgraduate 
School

Monterey, California 93940

so. CONTR LLING OPPICE oMaR AND ADDRS itE. REPORT DATE

Naval Postgraduate School December 1982

Monterey, California 93940 72

_V4. WSTO ING AGEUCV N AM 6 A8811ESVVHOW &WSIN C4080 1.8CRT LS.(faeft

Unclassified

64. OSRISNUTIOn STATeMeNT f(1 we Rom)

Approved for public release; distribution unlimited

11. OIST0119UTION STATE[MENT (of M ee .W" 'A to asee&M it *lleew.# * Rope")

1. SUPPLEREWTAV NOTES

NARF Stock Quantity
Inventory Model Single Period
MRP Dual Period
Demand Distribution Binomial
Production Schedulo

- Aearncv fcaUy en psyt Ste.mor S nain e as

::A Ready Supply Store (RSS) containing repair parts which
are anticipated to be used during the production process has
been established to support the Naval Air Rework Facility
(NARF). While this supporting inventory has previously been
constructed using historical demand data, a model which com-
putes stock levels based on the next quarter's production
schedule has been proposed. This thesis extends the use of

Do , oR 1473 Kmn~ow or , Nov so is owoarae0 PN 147 UNCLASF
SS1umy, CLASPICATO0 @NIG PAGIR



UNCLASSIFIED
$la2,IN CO.S . o * 06 "00S4E0 sound

projected production information in calculating RSS inventory
levels from one to two periods, and compares the expected
total costs from both systems under the assumption of a bi-
nomial demand distribution which is appropriate to a NARF.
As a result of this comparison, the conclusion is made that
the two-period model offers only very minor expected cost
advantages over a single-period formulation, while also being
much more difficult to utilize due to the complex calcula-
tions involved in the computation process.,

Aoa.5ss10 For
!T!5 GRA&I
DT!C TAB 0
Unannounced

Justificatlo

By--

--Distribution/ AP

Availability Codes_
Avail and/or

Diit Special

j .
r

Z

00 1473 UNCLASSIFIED

22

2 rem'w £uug MA~TO pt 6w . em mnm

6k -



~ir

Approved for public release; distribution unlimited

A Two-Period Repair Parts Inventory Model
for a Naval Air Rework Facility

by

John J. HundLieutenant Commander, Supply Corps, United States Navy

B.A., LeMoyne College, 1971

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN MANAGEMENT

from the

NAVAL POSTGRADUATE SCHOOL
. December 1982

Author: 16

Approved by: 4 L. $fthZ4 2.
Thesis Advisor

Second Reader

Dean of Information and Policy Sciences

3



ABSTRACT

A Ready Supply Store (RSS) containing repair parts which

are anticipated to be used during the production process has

been established to support the Naval Air Rework Facility

(NARF). While this supporting inventory has previously been

constructed using historical demand data, a model which com-

putes stock levels based on the next quarter's production

schedule has been proposed. This thesis extends the use of

projected production information in calculating RSS inventory

levels from one to two periods, and compares the expected

total costs from both systems under the assumption of a bi-

nomial demand distribution which is appropriate to a NARF.

SAs a result of this comparison, the conclusion is made that

f the two-period model offers only very minor expected cost

advantages over a single-period formulation, while also being

much more difficult to utilize due to the complex calcula-

tions involved in the computation process.
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TABLE OF SYMBOLS

k optimal starting inventory quantity pertinent to
the second quarter of a two-period model.

m,n production schedules for particular periods.

p historical probability that a given repair part
will be replaced during overhaul of its parent
equipment; associated with the binomial distribution.

s possible demand value during the second quarter of
a dual-period model.

u possible demand value during the first period of
either a single or multi-period model.

x inventory balance brought forward from a previous
period.

y starting inventory quantity for the initial produc-
tion period.

y* optimal opening inventory balance for the first
quarter of a single or multi-period model.

C unit price for a specified repair part.

H surplus cost rate for a specified repair part.

P shortage cost rate for a specified repair part.

f(x;g) optimal expected total variable costs for a period;
associated with a previous period closing balance of
x and a demand distribution of g.

g(u) demand distribution values during a specified period.

L(y;g) expected variable costs of placing a quantity, y, in
inventory at the start of one period, given a demand
probability distribution of g.
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I. INTRODUCTION

A. BACKGROUND

Naval Air Rework Facilities (NARFs) perform overhaul and

maintenance actions on various components utilized by fleet

aviation units. These rework activities are accomplished in

accordance with a quarterly production schedule which is

established by a joint workload conference between the NARF

and the Naval Air Logistics Command. Information on antici-

pated NARF workload requirements is also available for sever-

al additional future periods. Accordingly, the NARFs are in

the process of implementing a Material Requirements Planning

(MRP) system which will utilize the available forecast to

project requirements for individual spare parts used in the

rework process. By establishing such a system, the NARF will

be able to accomplish its assigned mission more efficiently

by reducing tne number of work stoppages caused by stockouts

[Ref. 1: 10].

MRP systems are intended to reduce or even eliminate re-

pair part inventory requirements through the technique of

phasing item arrivals to coincide with their need within the

production process. However, variations in procurement lead-

time and in the actual production schedules necessitate the

establishment of some form of backup inventory support. For

this purpose, the Naval Supply Center (NSC) supporting the

11
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NARF has established a Ready Supply Store (RSS) of parts

which are anticipated to be used during the production pro-

cess. Once located in the RSS, these parts are protected

from issue to other NSC customers. Consequently, factors

* isuch as the need to maintain maximum visibility of critical

aviation parts within the entire Navy Supply System, the

limitations on funding available to the RSS, and the require-

ment to support customers other than the NARF mandate that

the range and depth of items within the RSS inventory be

carefully monitored.

Prior to development of the MRP system, RSS stock quanti-

ties were established by the traditional method of using his-

torical demand data to compute appropriate levels for

individual items. This technique is effective in situations

where the workload is reasonably constant from one period to

the next, but can result in large surplus or shortage quanti-

ties when the production schedule changes to any great ex-

tent. Since component overhaul activity at the NARF is

susceptible to quarterly fluctuations, a system which deter-

mines phased repair part requirements based on anticipated

production schedules offers significant advantages over one

founded solely on demand history. Accordingly, an appro-

priate single-period inventory model utilizing the known pro-

duction information for the next quarter was proposed by

McMasters (Ref. 2: 4-151. This model distinguishes between

items which are replaced 100% of the time during overhaul and

12

1K ] __

. ... *- -- *- *'



those which are not, focusing on the latter category since

the former should necessarily be stocked in quantities al-

lowing for total replacement. The ensuing inventory system

is then based on obtaining a balance between expected short-

age and surplus costs in determining optimal stock quantities.

B. PURPOSE

While the McMasters single-period model represents a sig-

nificant step forward by utilizing projected future require-

ments in place of historical demand, it does not make maximum

use of available production forecasts since only the workload

for the next quarter is considered. In particular, surplus

costs projected at the end of a given period on a specific

item may be greatly reduced by considering the anticipated

demand for that item in future periods. Alternately, a sig-

nificant demand forecast in ensuing periods will probably

I ~result in a decreased tendency on the part of the system to

accept a potential shortage of that item in the initial

period. A model which incorporates anticipated rework acti-

vity beyond the upcoming production period should provide a

more accurate reflection of total expected costs over a par-

ticular length of time and, thus, offers the potential of

creating a more cost effective inventory mix.

Accordingly, the objectives of this thesis are to:

1. Develop a model which utilizes available production
schedules for the next two quarters in determining
appropriate inventory quantities for the supporting
RSS.

13



2. Conduct a cost comparison between the optimal results

obtained from single and dual-period models.

Completion of this two-period inventory system will repre-

sent the first step toward development of a multi-period

model which considers all available production information

and covers a full procurement leadtime for each RSS stock

item.

C. PREVIEW

Chapter II describes the general model utilized for the

duration of this paper and its behavior when used in a

single-period analysis. In Chapter III, this basic model is

*used as a two-period inventory system whose performance is

examined under the assumption of a uniform demand distribu-

tion. Chapter IV describes the two-period model under the

assumption of a binomial demand distribution. This distribu-

tion provides the best representation of demand appropriate

to a NARF [Ref. 2: 4]. A sensitivity analysis on the re-

sults obtained from using the two-period binomial model is

conducted in Chapter V. Finally, Chapter VI provides a sum-

mary of results as well as recommendations for future actions.

14
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II. THE SINGLE-PERIOD MODEL

A. PRELIMINARY INFORMATION

An inventory model compatible with the general ideas dis-

cussed in the first chapter must possess several essential

features. These are:

1. The model should select a stock quantity for each spe-
cific item which minimizes inventory-related costs.

2. As with the McMasters single-period system, the model
should evaluate the trade-offs between expected surplus
and shortage costs in computing appropriate inventory
levels.

3. The model should be able to incorporate two or moret production periods in the planning horizon.

4. The model should possess the capability of dealing with
production schedules which vary from one period to the
next. In other words, it must be able to treat demand
probability distributions which have different parame-
ter values in successive periods.

The general system described in the remainder of this thesis

possesses the essential features detailed above and is an

adaptation of a model developed by Karlin [Ref. 3: 231-2431.

B. GENERAL ASSUMPTIONS

Before proceeding to examine the single-period model, it

is necessary to specify the general assumptions which have

been made in its formulation. These assumptions are listed

as follows:

1. No backorders are permitted. If the required spare is
not available from RSS stock when the demand for it oc-
curs, then that demand is assumed to be filled from

15



outside the RSS and the shortage penalty cost reflects
the time required to obtain a unit from the external
supply system.

2. The procurement leadtime for orders of replenishment
stock is assumed to be zero. This permits the optimal
stock quantity computed during the review cycle at the
end of one period to be immediately on hand at the be-
ginning of the next period. This assumption is fairly
realistic for items carried at the NARF which are also
maintained in stock at the supporting NSC.

3. The unit rates for ordering, surplus and shortage
costs are treated as linear. Thus, for example, a
cumulative excess of supply over demand of 3 units at
the end of a particular period will result in a sur-
plus penalty which is three times higher than if the
total excess quantity was only 1.

C. COST ELEMENTS

There are many types of costs associated with maintaining

inventory systems, ranging from obvious factors such as pro-

curement and storage costs to less evident ones like the cost

of operating data gathering procedures for the system [Ref.

4: 10]. However, the only costs which need to be considered

in calculating the optimal inventory quantity for a particu-

lar item are those which vary with the quantity ordered. The

components of the total variable cost (TVC) associated with

the model developed in this thesis are discussed in the fol-

lowing paragraphs.

1. Ordering Costs

F A basic assumption behind the MRP concept is that an

order review will be conducted once per production period to

determine if a stock replenishment action for each individual

line item should be accomplished. Since this review will be

16



conducted at the close of each period for all items and since

subsequent requisitions will be created as part of the review

process, the cost of accomplishing the review and submitting

the requisitions will be considered constant from period to

period. Thus, the only variable cost associated with the or-

dering process will be the cost of the quantity procured.

This is the product of the unit price for a particular item,

C, and the quantity of that item which is ordered.

2. Surplus Costs

Surplus costs are those associated with having a

quantity of an item on hand in inventory beyond the period in

question. They can thus be expressed as the cumulative ex-

cess of supply over demand at the conclusion of a given

period times a constant surplus cost rate per item, H. Since

the costs of storing RSS stock remain relatively unchanged

from period to period, the surplus cost rate can be treated

as a penalty paid whenever the supply system is unwilling to

take back NARF excess stock on a full credit basis. This

penalty can be quantified by combining the unit price of the

item in question with the historical percentage of excess

NARF material accepted by the supply system for credit. Ac-

cordingly, surplus cost rates which are less than a particu-

lar item's unit price will be utilized in evaluating specific

model results.

17
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3. Shortage Costs

Whenever a rework requirement for a spare part cannot

be filled from the RSS inventory, a shortage cost represent-

ing the penalty associated with a work stoppage is incurred.

This shortage cost rate per item, P, is assessed at the con-

clusion of a period on the cumulative excess of demand over

supply. The shortage cost is typically the most difficult

parameter in an inventory model to quantify since a reasona-

ble estimate must include an accumulation of all production-

related delay costs such as the labor charge to backrob or

place the end item in storage until the required part arrives

(Ref. 2: 321. As a result, particular emphasis will be

placed on examining the sensitivity of results obtained from

specific models to changes in the shortage cost rate.

D. SINGLE-PERIOD OBJECTIVE FUNCTION

By utilizing the Karlin inventory model as adapted to in-

clude particular NARF costs, an objective function expressing

TVC for a single-period model can be formulated. This func-

tion can then be used to identify that inventory order quan-

tity for a particular item which results in the lowest TVC

for a given demand probability distribution. As previously

noted, only those items which are replaced less than 100% of

the time during overhaul need to be examined in the model.

Using the surplus and shortage cost parameters as pre-

viously discussed, the expected costs at the end of one

18
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period given an initial quantity of stock, y, and a continu-

ous denWand probability distribution, g(u), may be expressed

as L(y;g), where:

y

L(y;g) - Hf(y-u)g(u)du + Pf(u-y)g(u)du. (1)

0 y

On the interval where demand, u, takes on values from 0 to y,

the amount (y-u) represents a surplus quantity. Similarly,

the amount (u-y) is a shortage quantity whenever u ranges

from y to infinity. Therefore, the first term of L(y;g) is

the product of the surplus cost rate per unit and the ex-

pected number of surplus units at the end of the period,

while the second term consists of the product of the shortage

cost rate and the expected number of units short at the end

of the period.

The TVC incurred when x is the amount of an item on hand

at the conclusion of the previous period and y is the quanti-

ty in stock at the beginning of the present period can be

calculated as:

TVC = C(y-x] + L(y;g)
y

where C[y-xI represents the total procurement costs and

L(y;g) was given by equation (1). The minimum TVC for a one-

period model will be denoted f(x;g), where:

f(x;g) = min{Cty-x] + L(y;g)}. (2)
y-x

19
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The optimal y quantity used-in identifying f(x;g) will be

abbreviated as y*.

E. DEMAND PROBABILITY DISTRIBUTIONS

As discussed in the previous section, the value of y*

obtained from a specific model is heavily dependent upon the

applicable demand probability distribution. A realistic ex-

pression of actual demand experienced at a NARF may be de-

rived by using the binomial distribution. Under this

approach, a particular repair part contained in a given

component will either be required or not required in any re-

work action, and the probability, p, of the part being re-

quired can be estimated using historical data available at

the NARF. Given that the production schedule for a particu-

lar component is n during the period in question, and that

one unit of a certain repair part is contained in that com-

ponent, the probability, g(u), that total demand for that

repair part during this period will be u units may be ex-

pressed as [Ref. 5: 841,

n! u n-u
g(u) u! (n-u)! p (1-p)

Recursion equations may be utilized to simplify the pro-

cess of computing the entire range of demand for this dis-

crete function. Thus, it can be easily shown that:

20
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(1-p) n for u-0
g(u) = (3)

-u-l) pg(u-1) for u> 0

The binomial demand distribution as used above is appro-

priate only for the situation in which a quantety of one of

the repair part in question is present in the parent equip-

ment being overhauled. The case involving more than one of

a specific part in each of identical end items can also be

shown to be binomial with an additional parameter to describe

the multiplicity of the part [Ref. 2: 41. However, when a

common item is present in several different equipments, its

demand distribution is not binomial and will not be con-

sidered further in this thesis.

The binomial distribution is cumbersome to use in identi-

fying optimal inventory quantities through the Karlin model.

Thus, in order to illustrate the optimization process, the

initial problem formulation will utilize the uniform distri-

bution to represent predicted demand. Both continuous and

discrete uniform distribution functions will be considered.

Assume that the production schedule for a particular com-

ponent during the period in question is n, and that one unit

of a specified repair part is present in that component, but

that not all of it needs to be replaced. An example of this

would be adding additional oil to a partially full hydraulic

reservoir. Then, all values of demand, u, between 0 and n

21



are equally likely under the continuous uniform distribution

[Ref. 6: 113-114]. By restricting the range of possible de-

mand values to integer quantities, the discrete uniform dis-

tribution may be applied. In this situation, the probability,

g(u), that total demand for the repair part in question will

be u units, where u = 0,1,2,...,n, is given in general by:

(1 for Ou:.n
n

glu) = (4)
gt • 0 otherwise.

F. SINGLE-PERIOD DERIVATIONS

In this section, the specific single-period models asso-

ciated with the continuous and discrete uniform demand dis-

tributions as well as the binomial density function will be

derived. For all models, the optimal stock quantity, y*, at

the beginning of the period, given a production schedule of n

units and a previous period ending balance of x, will be that

value of y which minimizes the expected TVC. The model uti-

lizing a continuous uniform demand distribution function will

allow the y* value to be calculated explicitly using the cal-

culus. However, the models based on discrete distributions

require the approach of finite differences which involves

comparison of TVC values associated with integer inventory

quantities.

The optimal inventory value computed by applying each

model should be viewed both as a critical number which acts

22



as a cutoff point for determining whether an order should be

placed as well as a high limit defining what the order quan-

tity should be. Specifically, if y* is less than or equal to

the quantity, x, on hand at the close of a given period when

the level review is accomplished, then the optimal policy is

not to order additional stock. Conversely, a y* value great-

ver than the closing inventory balance implies that a requisi-

tion for (y*-x) is needed to bring available stock up to the

identified starting optimal quantity for the period.

1. Continuous Uniform Distribution

In this situation, let g(u) denote the continuous

uniform demand distribution function whose characteristics

have been previously described. Then, equation (2) may be

directly used as follows in evaluating the optimal inventory

quantity:

f(x;g) = min{C[y-x] + L(y;g)}
yZx

y
= minCly-x + Hf (y-u)g(u)du + Pf(u-y)g(u)du}.
yZx 0 y

Since the function g(u) is zero for values of u> n from equa-

tion (4), the TVC function to be minimized may be rewritten

as:

n
TVC = C[y-x] + + (u-y)du.

yCn J(Y-u) du + jf(0 y

23
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Carrying out the integration results in:

TVCy (H+P)y 2 + (C-P)y + P- xC.

Since Karlin has proven that the general TVC function re-

sulting from his model is convex (Ref. 3: 236], minimization

of this continuous function may be accomplished by taking the

derivative with respect to y, setting it equal to 0, and

solving for the optimal y. Thus,

0= d _H+P)y + (C-P)

dy n

or,

y* _ n(P-C) (5)
H+P

It can be seen from equation (5) that if the shortage penalty,

P, is less than or equal to the unit cost, C, the optimal

course of action is not to stock the item at all. This re-

sult occurs in the P L C situation because it is cheaper to

incur the penalty cost for being out of stock than it is to

make the ordering cost investment needed to bring the item

into the inventory. It should also be observed that the pre-

vious period closing inventory balance, x, has no impact on

the value of y*.

. 2. Discrete Uniform Distribution

As previously noted, discrete demand distributions

require a slightly different approach for evaluating y* than

used with continuous functions because the required demand

24
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probabilities are only defined for integer u values. Ac-

cordingly, the method of taking finite differences must be

applied. The technique of finite differences calls for de-

termining the largest integer value of y such that the ex-

pression (TVC - TVCy_1 ) is less than zero. In this manner,

that initial stock quantity which generates the lowest ex-

pected TVC will be identified since the cost function is con-

vex and it can be shown that non-integer y values can never

be optimal.

Assume that g(u) represents the discrete uniform de-

mand distribution. To use this particular distribution in a

single-period model, the TVC function must be modified to ac-

commodate the discrete case. This may be accomplished as

follows:

TVC = C[y-x] + L(y;g)

- C[y-x] + H (y-u)g(u) + P I (u-Y)g(u).
U=O u=y

Substitution of g(u) from equation (4) results in:

TVC = C[y-x] + (y-u) + P (u

u=y

By making the necessary substitutions and performing appro-

priate cancellations, it can be shown that:

TVC VC = (H+P)Y + nC - (n+1)P
y y-1 n

25
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Hence, y* is the largest y value such that the above formu-

lation is negative. This condition corresponds to the lar-

gest value of y for which:

(n+l)P - nCH+P "(6)

As with the continuous case, the stockout penalty charge must

be greater than the unit price if y* is to take on positive

values. Also, y* is again independent of x.

3. Binomial Distribution

The binomial distribution is a more complex example

of a discrete demand function than its uniform counterpart

since this distribution will take on different probability

values for possible demand quantities within the production

range. Again, the method of finite differences is appro-

priate for determining y*.

Accordingly, let g(u) represent the probab:-.ity that

demand during the period in question will be u units, given

a production schedule, n, and a repair part replacement fac-

tor, p. Then, as in the discrete uniform case,

Y-1 n
TMy C[y-xi + H I (y-u)g(u) + P L (u-y)g(u)

u=O U=Y

y l y-l n n
Cy-xl +Hy 2 g(u) - H 2 ug(u) +P ug(u) - Py I g(u).

U=-0 U-0 u=y uUy

By combining terms and recognizing that the mean of the bino-

mial distribution is equal to np, this may be simplified to:
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y-l y-1
TVCy = Cy-x] + (H+P)y Y g(u) - (H+P) I ug(u) + P(np-y).

u=0 u-0

Using this result, it can be shown that:

TVC - TVCy_1 = (H+P) 0g(u) + (C-P).
y Y u=O

As with the discrete uniform case, y* is the largest y value

for which the previous expression is negative. This condi-

tion corresponds to the largest value of y for which:

Yl g(u) < . (7)
U=0

The same conclusions about the relationship between P and C

as well as between y* and x can be drawn from this model as

were identified in the two previous derivations.

G. SINGLE-PERIOD EXAMPLE

The following example is provided to illustrate the

single-period models. Assume that the following data is

available:

n = 10 units, C = $100, H = $50, P = $200, x = 4 units.

Using the continuous uniform density function to represent

the demand distribution, the optimal opening inventory

balance may be computed from equation (5). Thus,

Y, 10(200-100) 4 units.S50+200 -4uis
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Since this quantity is equal to x, no order for additional

stock should be placed.

Similarly, if g(u) is assumed to be the discrete uniform

demand distribution, equation (6) shows that y* will be the

largest integer y value such that:

Y < (11)(200) - (10)(100) = 4.80
50 + 200 "0

Therefore, y* = 4 units. Again, the optimal procedure is not

to order additional stock since a quantity of 4 units is al-

ready available.

Finally, in the binomial model with the replacement rate,

p, assumed to be 0.5, equation (3) can be applied to generate

the appropriate demand probability distribution values. This

information can then be used in equation (7) to evaluate y*

as 5 units. In this case, one additional unit should be or-

dered to bring the current inventory balance up to y*.

H. SUMMARY OF KEY FINDINGS

The major results derived in this chapter as applicable

to single-period inventory models may be summarized as

follows:

1. The optimization process identifies a critical number
which is compared to the previous period closing
balance in order to determine whether stock replen-
ishment action is appropriate, and, if so, for what

I-. quantity.

2. y* values may be obtained for the demand distributions
examined by applying equations (5), (6), and (7).
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3. The shortage penalty charge, p, must exceed the unit

price, C, for the models to produce optimal initial

inventory values which are positive.

*4. y* is independent of the previous period closing

balance, x.
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III. DUAL-PERIOD MODELS--UNIFORM DISTRIBUTION

A. DISCUSSION

The single-period model developed in Chapter II will now

be extended in an attempt to take advantage of production in-

formation for an additional period. However, the requirement

to project costs for the second period is dependent on the

actual demand during the first period, thus making the two-

period model considerably more complex than the single-period

situation. The approach taken in this chapter will be to

first describe the general form of the dual-period model as

well as its multi-period counterpart. Then, the specific

model associated with the continuous uniform demand distribu-

tion function will be derived since this model permits expli-

cit evaluation of the optimal starting inventory quantity.

Finally, the effects of changing the demand distribution to

the discrete uniform probability mass function will be ex-

plored. This will establish a degree of familiarity in deal-

ing with discrete demand functions and will lay the groundwork

for the dual-period binomial model which is examined in Chap-

ter IV. In all two-period system derivations, the general

-" assumptions made in Section B of Chapter II will continue to

apply.

30
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B. OBJECTIVE FUNCTION--DUAL/MULTI-PERIOD MODELS

As accomplished for the single-period case, the Karlin

model can be adapted to provide an inventory system which de-

termines optimal stock quantities based on projected produc-

tion data for several quarters. This multi-period model

assumes that demand is represented by a sequence of indepen-

dent random variables which cover successive periods and are

not necessarily identically distributed (Ref. 3: 2331. One

familiar characteristic of such a model is that the resulting

optimal inventory quantity for the first period is a critical

number which has the same properties as did y* in the single-

period system. An additional feature of the two-period model

is that evaluation of the TVC function for any opening inven-

tory value, y, is dependent on the computation of several

optimal results from the second period considered alone.

This will make determination of the optimal two-period inven-

tory quantity a much more difficult task than was the case

for the one-quarter model.

1. Dual-Period

Assume that x and y represent the previous period

closing inventory balance and the present quarter opening

quantity, respectively. Additionally, let g and h be con-

tinuous demand probability distributions for the next two

periods. Then, the minimum expected TVC for a two-period

model will be denoted f(x;g,h) where (Ref. 3: 2351,
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f(x;g,h) = min{C y-x]- + L(y.g) + f(0;h) fg(u)du
yZx y

y
+ f f(y-u;h) g (u) du} (8)

0

As with the single-period case, that y value which generates

f(x;g,h) will be called y*.

In reviewing equation (8), it should be noted that

the first two terms correspond, respectively, to procurement

and surplus/shortage costs during the first period for the

applicable opening inventory value. The third term repre-

sents the expected optimal total costs incurred in the second

* period as a result of having no initial stock balance in that

period. Finally, the last term is the expected total optimal

costs for the second quarter, given a positive starting inven-

tory balance in that period as a consequence of the proba-

bility that demand during the first period is less than the

initial stock quantity.

2. Multi-Period

Although multi-period inventory systems beyond the

dual-period case are not within the scope of this thesis, the

general finite-period model as adapted from Karlin should

also be mentioned [Ref. 3: 2351. Accordingly, assume that

c l,g2, ...,gn represent the demand probability distributions

for the next n quarters. As with the preceding systems, the

minimum TVC for the n-period model will be denoted

f(x;g 1.g 2 ,...,g n ) and evaluated as:
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f(x;g 1 g2 ,...,g n ) = min{C[y-x] + L(y;gl)y-x

+ f(0 g2 ,g 3 , ... ,g n
})fg 1 (U~du

y
y

+ ff y-ug 2 ,g 3 ,...,gn )gl(u)du}.
0

As can be seen, the individual terms in this formulation

closely correspond to the previous description of a two-

period model.

C. GENERAL DUAL-PERIOD RESULTS

Before proceeding to examine specific dual-period models,

it is appropriate to summarize several important theorems

generated by Karlin. The results which follow are dependent

on the concept of stochastic ordering which is defined in the

* next paragraph.

Assume that (g1,1g2,...,gn) and (hl,h2 ,...,hn) represent

two sequences of continuous demand distributions for periods

1 through n. Then, the sequence gi is said to be stochasti-

cally smaller than the sequence hi if:

Y Y
fgi (u)du -> fh i (u)du

00

for i - 1,2,...,n and all non-negative y values. In other

words, demands based on the function gi have a larger proba-

bility of assuming smaller values than those generated by h.

A simple single-period example of stochastic ordering can be
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seen by comparing two continuous uniform distributions based

on different production schedules. In this situation, the

distribution resulting from the lower expected workload is

stochastically smaller than the one associated with the high-

er production schedule.

Using this concept, several key results as proven by

Karlin and then adapted to a dual-period model are listed as

follows:

1. If g and h are continuous demand distributions for the
next two periods and g is stochastically smaller than
h, then the starting optimal inventory quantity for the
two-period model generated by the demand sequence (g,h)
is greater than or equal to the single-period y* value
determined solely by g.

2. If g and h are continuous demand distributions for the
next two periods and g is stochastically smaller than
h, then the optimal inventory quantity for the first
period based on the sequence (gh) is equal to the y*
value identified by the sequence (g,g). This is a par-
ticularly useful result for verifying information pro-
vided by specific models derived in the remainder of
this thesis.

D. CONTINUOUS UNIFORM MODEL

The first specific dual-period model to be evaluated will

be that system which is associated with the continuous uni-

form demand probability distribution. Accordingly, let m and

n be the production schedules for a particular component in

two successive rework periods, and g and h be the correspond-

ing continuous uniform demand distributions. By applying

equation (8), the optimal result for the two-period inventory

model can be expressed as:
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f(x;gh) - min{C[y-x] + L(yzg) + f(O;h) fg(u)du
y-x y

y
+ f f (y-u;h)g(u)dul.

0

As will shortly be demonstrated, evaluation of the first

three terms in this cost function is a relatively straight-

forward process. However, two separate cases must be con-

sidered in assessing the last term.

1. Common Objective Function Terms

The individual terms in the cost equation may be

simplified as follows:

y m
a. L(y;g) = Hf (y-u) g(u)du + Pf (u-y)g(u)du.

0 y

Applying the appropriate value of g and carrying out the in-

tegration results in:

b2i ~~) (H+P)y Y2 M
=~~q 2m - y + -2-

m
b. g (u) du = fg (u du Mm

y y

c. The previous chapter demonstrated the existence of a cri-

tical number associated with any single-period continuous

uniform model (see equation (5)). This number determines

whether or not a stock reorder should be submitted as well as

the appropriate quantity in those situations requiring re-

order action. Accordingly, let k denote the critical number
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pertinent to just the second quarter of this two-period

model. Based on previous results, a first period ending

balance of zero implies that a requisition for k units must

be submitted to obtain the optimal inventory balance at the

start of the second period. Thus,

f (D;h) = kC + L (k; h)
k 0

- kC + Hf (k-u) h(u) du + Pf (u-k) h(u) du.
0 k

When this is evaluated, it reduces to:

f(0;h) =(Pk
2 + (C-P)k + n

2n 2

d. Now, in the general case, the properties of k may be ap-

plied to show that: {L(y-u;h) if y-u Z k
f(y-u;h)=

Therefore, it may be concluded that:

y y-k
f f (y-u; h) g(u) du = f L (y-u; h) g(u) du

0 0

+ f ICtk-(y-u)] + L(k;h)}g(u)du. (9)
y-k

In the case where y <k, the first term drops out while the

lower bound over which the integration is performed on the

second term becomes zero. Thus, two di.fferent cases need to

be evaluated.
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2. Case 1

In this case, y Z k, so:

y-k y-k

JL(y-u;h)g(u)du .1 ki{i~(Y..U)2 -Pyu !)du.

Also,

fIC~k-(y-u)I + L(k;h)}Jg(u)du f C C(k- (y-u)]du
y-k y-k

y-k

After evaluating these integrals, the entire objective func-

tion for case 1 may be constructed by combining this result

with the formulas for the common objective function terms

from subsection 1 above. Finally, after taking the first

derivative with respect to y and setting it equal to 0, the

following result is obtained:

Y= -nH +V n2 H2 -n[p2 (n-2m)+nC2 +2CP(m-n)+2mH(C-P)] (10)

3. Case 2

Since y < k in this case, the last term in the objec-

tive function given by equation (9) is now:

-y y
f f (y-u; h) g(u) du f fIC k- (y-u) + L (k,' Ig (u) du
0 0

= [k- (y-u)]du+~f (H+P)k 2 -Pk+nP du.

0 0
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After carrying out the integration, the entire cost function

for case 2 is formed as before by adding this result to the

common objective function terms. Using the calculus, the

optimal y value can then be identified as:

M(P-C) (11)!. Y* =H+P-C"

It should be noted that, in both cases, the formula for com-

puting y* is independent of the closing stock balance, x,

from the previous period. This result corresponds to an

identical finding for the single-period continuous uniform

model. Also, the value of P must again be greater than C for

positive y* values to occur.

4. Breakpoint Between Cases 1 and 2

Prior to examining the results obtained from this

model for specific parameter values, it is useful to note

that the two distinct cases are equivalent at y = k. There-

fore, the breakpoint between these alternatives may be calcu-

lated in terms of parameter values by setting the optimal

result from either case equal to the expression for k as de-

rived from equation (5). In particular, using the case 2

result,

m(P-C) - n(P-C)"y*= - = k
H+P-C H + P

I

Therefore,

nH - nC - mHPrn-n (12)
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For P values greater than the right-hand side of this ex-

pression, equation (11) should be used to calculate the op-

timal inventory quantity, while smaller P values require the

use of equation (10). Equation (12) may also be utilized to

obtain a definition of this breakpoint between the cases in

terms of the other parameters.

E. EXAMPLE OF THE CONTINUOUS UNIFORM MODEL

Assume that the projected production schedule for the

next two quarters is 100 and 200 units, respectively. Addi-

tionally, let C = $30, H = $20 and x = 0. Using the previous

findings, a comparison of the optimal stock quantities at the

beginning of the next period for the single and dual-period

models may be conducted for various values of P. The single-

period optimization utilizes the projected first period work-

load but ignores subsequent production information. Curves

of the y* values obtained from both models are displayed in

Figure 3.1. In the dual-period model, a P value of 40 was

computed as the breakpoint between cases 1 and 2 by using

equation (12).

These results are intuitively appealing for several rea-

sons. First, increasing the stockout cost causes the optimal

initial inventory to take on larger and larger values under

both systems. Additionally, the dual-period model, which

considers projected demand beyond the first period, computes

constantly larger inventory quantities than the single-period

39
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Figure 3.1 Continuous Uniform Model: One vs Two-Period
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model. Since the demand distributions are stochastically in-

creasing, this is in agreement with the findings of Karlin

which were previously discussed. Finally, extremely large

stockout penalty costs generate nearly equivalent results

under both systems as the initial inventory is maintained at

a high level to protect against this exorbitant penalty

charge.

An assumption in this example was that the production

schedule in the second quarter exceeded that of the first

period. Suppose that, instead, the rework requirements are

projected to be decreasing over time. Let the parameters

used in the first example remain the same, except that now

m = 200 and n = 100. The curves of y* corresponding to the

single and dual-period models are shown in Figure 3.2. The

y* values for the dual-period system are derived entirely

from case 2 since the application of the breakpoint formula

yields a negative value of P.

These values are similar to the results of the increas-

ing production schedule situation as the two-period system

generates higher optimal inventory quantities than the one-

quarter model despite the projected decrease in rework ac-

tivity. This leads to the general conclusion that a

two-period formulation can be applied in both increasing and

decreasing production schedule situations to identify a y*

solution yielding lower TVC results than those derived from a

single-period y* value.
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Figure 3.2 Continuous Uniform Model: Decreasing Production
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F. DISCRETE UNIFORM MODEL

A logical extension of the continuous uniform model is

to consider the discrete case in which both demand and in-

ventory quantities may take on only integer values. This

formulation provides a closer representation of the actual

situation at the NARF where integer values of these parame-

ters are appropriate. Since the demand function under this

model is not continuous, finite differences are needed in

determining y*.

As befbre, assume that the production schedules for the

next two periods are m and n respectively. Equation (8) can

then be modified to accommodate the discrete case as follows:

f(x;g,h) = min C(yrx] + L(y;g) + f(O;h) 2 g(u)""y~x ( u=y

y- 1+ I fl(y-u;h g (u).
i u=0

Now, TVC - TVCy_ may be examined on a term by term basis as

follows:

1. C[y-xj - C((y-1) - x = C.

y-1 m
2. L(y;g) - L(y-l;g) = H (y-u)g(u) + P , (u-y)g(u)

U=O u=y
y-2 m

" H 0[(Y-l)-u]g(u) - P E [u-(y-1)]g(u).

After several steps, this may be reduced to:

L(y;g) L(y-l-g) = (H+P)y - (m+l)P
e m
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3. As before,

f(O;h) = kC + L(k;h)

kC + # (k-u) + (u-k)
n u=0 nu-k

which is independent of y. The finite differences result for

the third term is therefore

+ - -- (k-u) + (u-k)M nu=O Mnu-k

4. The last term of the cost equation must again be con-

sidered in two separate cases. For case 1,

y-1 yk y-1
yf(y-u;h)g(u) = YL(yu;h)g(u) + y C[k-(y-u)]g(u)
u=O u=O u=y-k+1

Y-1!+ yF, L(k;h)g(u).

u=y-k+1

However, the application of the method of finite differences

in this case fails to provide the necessary cancellations

which simplify the evaluation process and, thus, justify use

of this technique. As a result, a complete enumeration of

the TVC results for all possible y values offers a better ap-

proach to solving case 1 than does finite differences. Since

this procedure is employed in Chapter IV to evaluate the

dual-period binomial model, it will not be duplicated here.

Rather, the results for case 2 under finite differences will

be shown.
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Case 2

Since y < k,

I f(y-uzh)g(u) = I C[k-(y-u)]g(u) + i L(k;h)g(u).
u=O u-0 u=O

Taking finite differences results in:

Sk-1 n

= C(k-y) + IL I (k-u) + I (u-k).m mn uM0 m u=k

Putting the previous results all together, the following

expression for the difference in variable costs between

quantities of stock y and (y-l) may be obtained for case 2

of the two-period discrete uniform model:

TVC - TVC = (H+P-C)x + mC - (m+l)P
y y-1 m

Thus, the optimal y is the largest integer quantity for which

the above expression is negative. This condition corresponds

to the largest value of y for which:

< (m+1)P - mC (13)
H+P-C

If there is also an integer value of y which is equal to the

right-hand side of equation (13), then it is an alternate

optimal solution. As in the previous model, the optimal y

value is independent of the previous period closing balance,

x, and P must be greater than C for y* to be positive.
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G. EXAMPLE OF THE DISCRETE UNIFORM MODEL

Figure 3.3 presents the results obtained for a range of

stockout costs utilizing the discrete uniform demand distri-

bution in single and dual-period models as derived above and

-* in Chapter II. The values for m, n, x, C and H remain the

same as in Figure 3.1. Only relatively large values of P

are analyzed to ensure that the breakpoint between cases 1

and 2 is exceeded. The y* values obtained are consistent

with those computed from the continuous uniform approach.

H. SUMMARY OF KEY FINDINGS

The principal results obtained in this chapter for two-

period inventory models based on uniform demand distributions

are summarized as follows:

1. As in the single-period case, a critical number which
determines the necessity of ordering additional stock
at the beginning of the first period as well as the
optimal order quantity can be identified. This number
is independent of the previous period closing balance,
and may be computed for the various cases described by
applying equations (10), (11) and (13). Additionally,
the shortage cost rate must be greater than the unit
price if the item is to be stocked at all.

2. The critical number for the first quarter of a dual-
period model is always greater than or equal to the
optimal result for the corresponding one-period model.

3. In both increasing and decreasing production schedule
situations, the two-period model identifies a y* quan-
tity which yields lower total costs than those gen-
erated by a one-period y* value.
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Figure 3.3 Discrete Uniform Model: one vs Two-Period
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IV. DUAL-PERIOD BINOMIAL MODEL

A. DISCUSSION

Now that an understanding of the general rationale behind

a two-period inventory system has been developed using the

uniform demand distribution, attention will turn to the bi-

nomial density function which is more pertinent to a NARF.

As with the discrete uniform case, explicit computation of

the optimal inventory quantity for this dual-period model

will not be possible since the demand distribution is only

defined at integer values. Therefore, a technique of com-

paring the TVC values for possible initial inventory quanti-

ties must be employed.

The computation of total costs for this distribution will

be more complex than for the uniform distribution since the

density function will take on different values for various

demand possibilities within the production range. The same

complication will also be encountered as in the previous ex-

amples whereby separate evaluation of the last term of the

objective function for two distinct cases must be accom-

plished. As a consequence, the technique of finite differ-

ences will not provide any advantages over using the TVC

values directly. Accordingly, the general approach to this

particular model will be to first derive the entire TVC for-

mulation for both cases, and then to use these formulas to
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evaluate the expected variable costs incurred for each possi-

ble starting inventory value. From this enumeration, the

optimal y associated with the minimum TVC can be selected.

B. THE MODEL

Let g and h represent the binomial demand distributions

for the next two periods derived from an historical replace-
ment factor, p, and production schedules m and n. As with

the discrete uniform model, equation (8) must be modified to

yield an expression for TVC associated with the opening in-

ventory balance, y, and a previous period ending quantity, x.

The y* value has been shown to be independent of the previous

period closing balance for all models previously evaluated in

this thesis, and a similar rationale can be employed in this

particular situation. Therefore, x will be assumed to be

zero for convenience in formulating the model. Then,

M y-1
TVC = Cy + L(y;g) + f(O;h) I g(u) + I f(y-u;h)g(u).

Y u=y u=O

1. Common Objective Function Terms

The evaluation of the first three terms of the objec-

tive function will be accomplished independently of the last

term which involves separate cases contingent on the value of

-* the critical number for the second period. Thus,

a. The first term, Cy, and one component of the third term,

g(u), cannot be simplified.
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y-l m
b. L (y;g9) = H I (y-u)g(u) + P I (u-y)g(u)

U-0 U-y

-1 y-l m m
M Hy g(u) - H ug(u) + P I ug(u) -Py I g(u).

u-0 u=0 U=Y u=y

However, the following substitution may be made:

g (u) g ~ (u) - g(u) = 1 y-

U=y u=O u0u=0

Also,

m m y-l
I ug(u) I ug(u) - I ug(u).

u=Y u=0 u=O

Now, the first term on the right-hand side of the expression

immediately above is the mean of g(u). Hence,

rn Y-1
Sug(u) = pm - I ug(u).

u=y u=0

With these substitutions, L(y;g) reduces to:

y-l y-1
L(y;g) = (H+P)y I g(u) - (H+P) I ug(u) +PMP- Py. (14)

U=0 U=0

c. As in previous formulations, let k denote the critical

number derived from an independent evaluation of the second

period. This may be accomplished by using equation (7) as

developed in Chapter II. Then, using the variable s to repre-

sent demand in the second period,

f (0; h) - kC + L (k; h)
k-1 n

= kC + H I (k-s)h(s) + P I (s-k)h(s).
S=O s-k
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Applying the same simplifications as were used to obtain

equation (14) results in:

k-i k-i
f(O;h) =(C-P)k + (H4-P)k 2 h(s) - (H+P) I sh(s) + pnP.

s=O S=0

2. Case 1

For the case where y Z k, we recall from Chapter III

that:

y-1 yk y-1
Ff(y-u;h)g(u) L(y-u,-h)g(u) + E C~k-(y-u)]g(u)
u=O u..O u=y-k+1

y-1
+ E L(k;h)g(u).

u=y-k+ 1

Now, this expression can be simplified using the definition

of L(y;h) as contained in, equation (1), the properties of the

binomial distribution', and the variable s to represent dema7nd

in the second period. After simplification, the entire ob-

jective function for this case becomes:

y-1 y-1
TVC = (C-P) y+ (H+P-C) y ,g (u) - (H+P-C) , ug (u)

u=0 u=0

y-k y-k
+ pmP + Cy Eg(u) - C ug(u)

U=0 u=0

+ m k-1 k-1
+ E 1{(H+P) k h(s) - (H+P) sh (s) + pnP +k (C-P) g (u)
u-y-k+i s0s=

* ~~~+ {(H+P) (y-u) Eh (s)- (H+P) Ts~)PpPyu}~)
U-0 S=0 S=IJ

51



3. Case 2

In this situation with y < k,

f(y-u;h)g(u) = C(k-(y-u)]g(u) + T L(k;h)g(u).
U0 U=0 u=O

Using an identical approach to that of case 1, an evaluation

of this expression may be performed. After retrieving all

terms in the objective function, making the appropriate com-

binations, and noting that the summation from 0 to m of g(u)

equals 1, the result for case 2 is:

y-i y-1
TVC = (C-P)y + (H+P-C)y I g(u) - (H+P-C) I ug(u) + pmP

u=0 u=0

k-i k-i
+ (H+P)k I h(s) - (H+P) I sh(s) + pnP + (C-P)k. (16)

s=0 s=0

4. Conclusion

The critical number y* for a two-period binomial

model may thus be identified by using equations (15) and (16)

to compute the TVC values for all possible initial inventory

quantities; it is that value of y which results in the mini-

mum TVC. It should be noted that, if the assumption of x

equaling zero is dropped, then the TVC equation for each y

value will include a Cx term. Therefore, the relationship

between TVC values associated with all y quantities will be

unchanged by the addition of this common term.
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C. EXAMPLES OF THE BINOMIAL MODEL

Because the objective functions developed in the two-

period binomial model are rather complex, a computer program

was written which accepts various system parameters and de-

termines the optimal y value for the beginning of the first

period. Unlike the continuous uniform model, identification

of the breakpoint between cases 1 and 2 is not required as

the program first determines k and then uses this value in

calculating appropriate variable costs.

Results obtained from using this program for various

values of P with

m = 10, n = 20, p = 0.5, x = 0, H = $20, C = $30

are displayed in Figure 4.1. As in all previous single and

dual-period models, values of P less than C imply that the

item should not be stocked at all. Consequently, only P

values above $0 are included in this figure.

These results are consistent with those obtained using

the uniform distribution models in that the optimal value of

y at the beginning of the first period increases with the

stockout penalty. Additionally, the extra information con-

tained in the two-period model causes its optimal result to

be greater than or equal to that obtained from the single-

period e.±ialysis. However, the difference in the y* values is

never more than one. Thus, an examination of the benefits

derived from the additional stock quantities in the dual-

period model needs to be conducted.
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Figure 4.1 Binomial Model: One vs Two-Period
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However, before performing this detailed analysis, it is

useful to examine a decreasing production schedule situation

as well as verify Karlin's result that a two-period inventory

model based on stochastically increasing demand distributions

generates y* values which are equal to the y* quantities pro-

duced by a dual-period inventory system based on a constant

* production schedule. Accordingly, assume that the following

parameter values are given:

m = 10, x = 0, H = $20, C = $30, P = $150

The optimal initial inventory quantities derived for various

replacement rate values and second-period production sched-

ules are shown in Table I.

TABLE I

Binomial Model: Varying Production

p y* (n=5) y* (n=10) y* (n=20) y* (n 50)

0.9 10 10 10 10

0.8 9 9 9 9

0.7 8 9 9 9

0.6 8 8 8 8

0.5 6 7 7 7

0.4 5 6 6 6

0.3 4 5 5 5

0.2 3 3 3 3

0.1 2 2 2 2

Several conclusions may be drawn from Table I. First,

the situation where the production schedule in the second
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period is greater than or equal to ten fulfills the condi-

tions for a stochastic demand increase, and, as noted by

Karlin, this environment always produces a y* value equal to

that of the constant production schedule situation. Addi-

tionally, the case where demand is stochastically decreasing,

as depicted in the table under n = 5, identifies y* values

which are nearly equivalent to the increasing production

schedule situation. This may be interpreted to mean that the

mere prospect of any demand in the second period is more im-

portant than the actual forecast quantity.

D. SUMMARY OF KEY FINDINGS

The major results of this chapter for the two-period bi-

nomial inventory model are summarized as follows:

1. The optimal initial inventory value is again a critical
number which may be computed by identifying that y
value which generates the minimum TVC in equations (15)
and (16). As in the previous single and dual-period
models, y* is independent of the previous period closing
balance, x, and will only take on positive values if
the shortage cost rate for an item exceeds its unit
price.

2. An increasing production schedule will produce a y*
value identical to the situation in which the produc-
tion workload is constant.
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V. TWO-PERIOD BINOMIAL MODEL SENSITIVITY ANALYSIS

A. DISCUSSION

In this chapter, a detailed analysis of the two-period

binomial model is conducted. The first portion of this

analysis is a parametric evaluation of the sensitivity of

model results to changes in the unit price and the surplus

and shortage cost rates. Then, a comparison of expected

optimal TVC values generated by several alternative binomial

models using a two-period time horizon is conducted. These

alternative costs are arrived at by employing the standard

two-period model, the two-period objective function using

single-period y* values, and the single-period model for two

distinct periods. Based on the results of this analysis,

several general conclusions on the use of the two-period bi-

nomial model are drawn.

B. ORDERING, SURPLUS AND SHORTAGE COST SENSITIVITY ANALYSIS

One aspect of analyzing the dual-period binomial inven-

tory model is to evaluate the sensitivity of the model to

changes in various system parameters. Since the production

schedules which generate the demand distributions are deter-

mined outside the scope of the model, the current emphasis

will be on examining the effects of changes in the unit price

and surplus/shortage cost parameters on system results.
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Throughout this section, a constant production schedule of 10

units for each period is assumed, while the replacement fac-

tor is permitted to take on the values of 0.9, 0.5 and 0.1.

Then, two of the three parameters of interest will be held

constant so that the results obtained from varying the third

may be examined.

1. Unit Price Changes

An assumption was made in Chapter II that the surplus

cost rate for an item must be less than its unit price. Ad-

ditionally, the preliminary analysis conducted on the bino-

mial model in Chapter IV established that the shortage cost

4ate should be greater than the unit price for any particular

part to be stocked. Thus, a range of potential values for C

between H and P seems appropriate. Under the assumption that

H - $250 and P = $1000, Table II displays optimal initial in-

ventory quantities associated with the two-period model andII
the previously identified replacement factors for various

values of C within the established range. The TVC calculated

at y* and at values of y which differ from y* by one unit are

also shown.

The general conclusion that may be drawn from this

table is that y* is not particularly sensitive to changes in

the unit price, except when the value of C approaches the

ceiling level established by the shortage cost rate. How-

ever, when C does get close to P, the difference between

expected variable costs for y* and the initial inventory
~58I

r

ii i
__ _ _ _ _ _ _ __ _ _ _ _ _ _ __ _ _ _ _ _ _ _

• ' K li , i i_ _



TABLE II

Binomial Model: Sensitivity Analysis of C

(1) p - 0.9

C y* TVC(y*-1) TVC(y*) TVC(y*+l)

250 10 5284.52 5185.84 ---
500 10 9697.35 9685.86 ---
750 9 14148.34 14030.29 14105.94
950 8 17322.59 17293.65 17322.81
990 7 17882.69 17876.01 17884.26

(2) p - 0.5

C y* TVC(y*-l) TVC(y*) TVC(y*+l)

250 6 3884.28 3757.35 3836.04
500" 6 6230.46 6198.02 6322.36
750 5 8416.99 8355.68 8419.88
950 3 9818.16 9784.58 9786.48
990 2 9981.47 9974.27 9978.57

(3) p - 0.1

C y* TVC(y*-1) TVC(y*) TVC(y*+l)

250 1 2000.00 1284.53 1329.94
500 1 2000.00 1697.36 1895.92
750 1 2000.00 1990.08 2413.22

950 0 --- 2000.00 2189.28
990 0 --- 2000.00 2230.08

quantities immediately above and below y* is so small as to

be insignificant. In fact, if a y value of 6 is used in the

p = 0.5 model with C - $990, the expected TVC is only three

percent higher than the corresponding TVC associated with the

optimal y value of 2.

2. Surplus Cost Rate Changes

In this portion of the analysis, the range of poten-

tial surplus cost values will not be assumed to be bounded Ly

other parameters, despite the assumption in Chapter It that
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the surplus cost rate would be expected to be less than the

unit price. This assumption about H is temporarily suspended

so that the results obtained from a wide range of H values

may be examined. Dual-period binomial model results for

various H values were obtained for the three replacement fac-J tors when C - $500 and P = $1000, and these values are listed

in Table III.

TABLE III

Binomial Model: Sensitivity Analysis of H

(1) p =0.9

H y* TVC(y*-l) TVC(y*) TVC(y*+1)

25 10 9540.45 9382.39 ---
100 10 9592.75 9483.54
250 10 9697.35 9685.86 ---
500 9 10107.78 9871.69 10023.00
750 9 10216.14 10046.01 10360.17
1000 9 10296.70 10192.55 10669.53
1500 8 10741.10 10381.48 10409.28

i (2) p =O.5
( H y* TVC(y*-1) TVC(y*) TVC(y*+I)

25 7 5780.84 5717.30 5723.55
100 7 5919.90 5918.99 5998.86
250 6 6230.46 6198.02 6322.36
500 5 6595.70 6472.72 6596.83
750 5 6714.84 6686.19 6967.13
1000 4 7076.17 6833.98 6899.66
1500 4 7228.52 7072.26 7326.60

(3) p = 0.1

H y* TVC(y*-I) TVC (y*) TVC(y*+l)

25 2 1540.45 1515.64 1760.36
100 1 2000.00 1592.75 1642.40
250 1 2000.00 1697.36 1895.92
500 1 2000.00 1856.89 2312.86
750 1 2000.00 1974.51 2712.50

1000 0 --- 2000.00 2092.12
1500 0 --- 2000.00 2327.35
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The optimal initial inventory quantity decreases

with increasing H but appears to be fairly insensitive to

changes in the surplus cost rate. Additionally, the expected

TVC at y* for H - $1500 are less than twenty-five percent

* !higher than the results for H - $25 in all three cases, de-

spite the fact that the surplus cost rate has been increased

by a factor of sixty. These results imply that a precise

estimate of the surplus cost rate is not required to obtain

useful model results.

3. Shortage Cost Rate Changes

Finally, the last parameter to be considered in this

section of the analysis is the shortage cost parameter. As

was noted in an earlier chapter, this parameter must be

greater than the applicable item's unit price if the part in

question is to be stocked at all. Thus, the range of values

for P will start at C and has no upper bound. Table IV de-

picts the dual-period model results obtained for various

values of P when C = $500, H = $250 and the replacement fac-

tor takes on the three values as before.

The evidence from this table is that the optimal

stock quantity at the beginning of the first period is in-

sensitive to changes in the stockout cost rate when P is much

I,- larger than C. However, as the difference between the unit

price of an item and its stockout cost grows small, the y*

value changes more rapidly for relatively minor changes in P,

especially in the case where p - 0.5. Additionally, the
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TABLE IV

Binomial Model: Sensitivity Analysis of P

(1) p 0.9
P y* TVC(y*-1) TVC(y*) TVC(y*+1)

550 8 9216.04 9187.09 9216.25
750 9 9627.15 9509.10 9584.75

1000 10 9697.35 9685.84 ---
2000 10 10360.17 9999.98 ---
5000 10 11406.20 9999.98 ---
10000 10 13149.43 9999.99 ---
20000 10 16636.25 9999.99 ---

(2) p - 0.5
P y* TVC(y*-1) TVC(y*) TVC(y*+1)

550 3 5306.64 5273.04 5274.69
750 5 5857.42 5796.02 5859.15

1000 6 6230.46 6198.02 6322.36
2000 7 6953.12 6902.70 7061.15
5000 8 7664.06 7654.75 7858.92
10000 8 8328.12 8045.11 8192.78
20000 8 9298.81 8468.81 8507.14

(3) p - 0.1
P y* TVC(y*-I) TVC(y*) TVC(y*+I)

550 0 --- 1100.00 1245.67
750 1 1500.00 1458.86 1784.82
1000 1 2000.00 1697.36 1895.92
2000 2 2394.71 2237.36 2631.49
5000 2 3851.30 2847.77 2897.38
10000 3 3695.53 3271.82 3624.67
20000 3 4719.71 3583.43 3751.84

difference in expected TVC between y* and initial inventory

levels immediately above and below y* becomes much greater as

P takes on larger values. For example, the optimal result of

y - 8 for P - $20000 and p - 0.5 is nearly ten percent less

expensive than the expected TVC at y - 7. The conclusion

which may be drawn is that the NARF needs to have reasonably
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accurate estimates of its shortage cost rates, particularly

for high value items.

C. TVC COMPARISON--SINGLE VS DUAL-PERIOD MODELS

In this section, the difference in the expected TVC be-

tween single and dual-period binomial models is evaluated and

analyzed. Comparison between the results obtained from the

following distinct models is accomplished over a two-period

cost horizon:

1. The first alternative involves the computation of ex-
pected total costs associated with y* as derived from
the dual-period binomial model.

2. The second alternative computes an expected TVC value
by a combined use of single and dual-period models.
This is accomplished by substituting the y* value de-
termined from a single-period model into the two-period
objective function. This alternative, when contrasted
with the pure dual-period result, depicts the differ-
ences between one and two-period models on a scale
which allows for a meaningful comparison of the systems.

3. The third TVC result is determined by considering each
quarter as a separate, single-period model. The y*
values obtained for each period are then used in the
single-period binomial objective function to calculate
the aggregate expected TVC result. This alternative
implies that any surplus at the end of the first quar-
ter is disposed of and a buy for a quantity equivalent
to the second-period y* is initiated.

Assume that the model parameters take on the following

values:

C - $500, H - $250, P - $1000, p - O.5, x - 0.
'I

Table V displays the TVC results for the three models. The

numbers in parentheses immediately following the total costs

for each alternative identify the y* value(s) used in that
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TABLE V

Binomial Model: TVC Comparisons

Production Alternative Alternative Alternative

Schedules One--TVC Two--TVC Three--TVC

m-5, n-5 3316.41 (3) 3437.50 (2) 3546.87 (2,2)

m-5, n-10 4808.11 (3) 4933.11 (2) 5042.48 (2,5)

m-5, n-20 7625.41 (3) 7750.41 (2) 7859.79 (2,9)

m=10, n-5 4747.93 (5) 4747.93 (5) 5042.48 (5,2)

m-10, n=10 6198.02 (6) 6230.46 (5) 6538.08 (5,5)

m-10, n=20 9015.06 (6) 9047.78 (5) 9355.39 (5,9)

model in determining the expected TVC. The second of these

numbers in parentheses for the third alternative is the k

value for the second period which was described earlier in

this thesis.

As anticipated, the optimal inventory value identified

by the two-period binomial model produces a lower expected

TVC than either of the other two alternatives. The more

expensive result for the second alternative results from the

optimal dual-period y* not being used, while the increased

costs associated with the third alternative are a conse-

quence of disposing of the first period excess and, thus,

having no carryover inventory. Despite these differences,

the cost variations between the various model results are

relatively small. Table VI depicts the differences between

alternatives one and two as well as between one and three as

a percentage of the expected TVC calculated for alternative

one.
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TABLE VI

Binomial Model: Percentage Differences

Production Alternatives Alternatives
Schedules One and Two One and Three

m=5, n-5 3.7 6.9

m=5, n-10 2.6 4.9

m-5, n-20 1.6 3.1

m-10, n-5 0.0 6.2

m=10, n=10 0.5 5.5

m-10, n=20 0.4 3.8

The most interesting result that can be seen from Table

VI is that the percentage difference between alternative one

and both other alternatives decreases as the production

schedule for the second period increases, except in the case

where the y* value for alternatives one and two is the same.

In fact, by the time that the rework forecast for the first

period reaches ten, the expected cost benefit to be derived

from using the two-period y* instead of the single-period y*

borders on the insignificant, thereby making the use of the

more complex two-period model a questionable proposition.

One additional factor which needs to be considered before

concluding this model comparison is the accuracy of produc-

tion schedule information. The first quarter workload fore-

cast is utilized in both single and dual-period models, and

so an error in this parameter will have a similar impact on

the results obtained from each system. On the other hand,

since the second period projected rework schedule is only
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considered in the two-period model, a variance in this pa-

rameter between the actual and forecasted workload will only

affect the results obtained from the two-period model. Addi-

tionally, some difference between the actual and projected

schedules is more likely to occur in the second period than

4 "in the first since current information is generally more ac-

curate than that applying to a future period. While the im-

pact of an inaccurate second period rework forecast will vary

greatly from situation to situation, it will only serve to

further reduce or even eliminate the limited advantages which

the two-period model offers over its single-period counterpart.

D. SUMMARY OF KEY FINDINGS

The principal results identified in this chapter as ap-

plicable to the dual-period binomial model are listed as

follows:

1. The model is very sensitive to the value of the short-
age cost parameter and is relatively insensitive to the
value of the surplus cost parameter.

2. The cost advantages obtain'd from the two-period model
represent only a small improvement over the one-period
system.

3. The difficulties in using the two-period model caused
by its complexity as well as in obtaining accurate
forecast data for the second quarter reduce that
model's effectiveness.

I
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VI. CONCLUSIONS/RECOMMENDATIONS

A. DISCUSSION

The basic purpose of this thesis has been to consider

projected production information spanning two periods in com-

puting RSS inventory quantities. One important assumption

used throughout this thesis is that an order review is con-

ducted at the beginning of each period for all RSS items, and

that, consequently, there is no fixed ordering charge asso-

ciated with any given buy. Various two-period models based

on different demand probability distributions have been de-

rived and analyzed, including the dual-period binomial system

which most closely represents the situation applicable to a

NARF. In this chapter, several general conclusions are drawn

from the information previously presented. Additionally,

recommendations for potential future actions in this area are

made.

B. CONCLUSIONS

The principal results obtained from considering the ap-

plication of a dual-period binomial inventory model to a NARF

are listed as follows:

1 1. The model identifies a critical inventory quantity
which can be compared to the previous period closing
balance to determine both whether additional stock is
needed and the amount of the stock order if replenish-
ment action is necessary.
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2. The optimal inventory quantity obtained from the two-
period model is always greater than or equal to the y*
value determined from a one-period system. As a re-
sult, there are expected cost benefits to be derived
from using a two-period approach.

3. The two-period situation is more difficult to evaluate
than the single period since expected optimal results
from the second period must be used in conjunction with
anticipated first-period demand to determine y*.

4. The difference between the expected optimal TVC results
obtained from one and two-period inventory models is
relatively small. This difference is further reduced
by the consideration that the production schedule fore-
cast will generally be less accurate for the second
period than it will be for the first.

5. A fairly accurate estimate of the stockout cost rate is
an essential element in the dual-period formulation.
This is especially true for high cost items where the
unit price will be relatively close to realistic stock-
out cost values. On the other hand, the results ob-
tained from the dual-period binomial model are not
particularly sensitive to changes in the surplus cost
rate.

C. RECOMMENDATIONS

Several recommendations for future actions can be identi-

fied as a result of the conclusions made in this thesis.

First, the sensitivity of model results to changes in the

stockout cost rate indicates that the NARF should attempt to

quantify all costs incurred as a result of work stoppages so

that an accurate estimate of P can be made. This is an es-

sential requirement for identifying the optimal quantity of

a repair part to stock at a particular point in time, and is

necessary whether a single or dual-period inventory model is

used in the RSS.
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The second recommendation is derived from the conclusion

that the single-period model provides results which are

nearly equivalent to those obtained from the dual-period

system in terms of the expected TVC incurred while using an

objective function which is much easier to evaluate. Addi-

tionally, the fact that production schedule forecasts for the

second period are probably less accurate than for the first

increases the appeal of the single-period approach. Accord-

ingly, it is recommended that the single-period binomial in-

ventory model as discussed in Chapter II of this thesis be

used by the supporting NSC to determine RSS stock quantities

for the NARF instead of the dual-period model, pending re-

ceipt of the results of additional analysis as recommended in

the following paragraph.

Finally, the availability of workload forecasts beyond

the second period must be considered. Although the cost ad-

vantages obtained from the two-period model over the single-

period system are small, the possibility exists that these

benefits are increased by incorporating this additional pro-

duction information into the model. Therefore, it is recom-

mended that the two-period model be expanded to consider

£projected rework data spanning up to a procurement leadtime

in length, and that the optimal results from such a model be

rcompared to the single-period results.
f
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